Current Slide
Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.
Fuzzy (Soft) Clustering
Example: Let cluster feature be
| |
- Fuzzy clustering:
- k fuzzy clusters C1, …, Ck, represented as a partition matrix M = [wij]
- P1: For each object oi and cluster Cj, 0 ≤ wij ≤ 1(fuzzy set)
- P2: For each object oi,
\[\sum_{i=1}^{k} w_{ij}=1\]
(equal participation in clustering) - P3: For each cluster Cj,
\[0<\sum_{i=1}^{n} w_{ij}
(ensure no empty cluster) - Let c1, …, ck as the centers of k clusters
- For each object oi, sum of square error SSE, p is a parameter:
\[SSE(C_{j})=\sum_{i=1}^{n} w_{ij}^{p}dist(o_{i},c_{j})^2\]
\[SSE(o_{j})=\sum_{j=1}^{k} w_{ij}^{p}dist(o_{i},c_{j})^2\]
- For each cluster C, sum of square error:
\[SSE(C)=\sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij}^{p}dist(o_{i},c_{j})^2\]
Speaker notes:
Content Tools
Tools
Sources (0)
Tags (0)
Comments (0)
History
Usage
Questions (0)
Playlists (0)
Quality
Sources
There are currently no sources for this slide.