Current Slide
Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.
Univariate Gaussian Mixture Model
- O = {o1, …, on} (n observed objects), Θ = {θ1, …, θk} (parameters of the k distributions), and Pj(oi| θj) is the probability that oi is generated from the j-th distribution using parameter θj, we have
\[P(o_{i}|\theta)=\sum_{j=1}^{k}w_{j}P_{j}(o_{i}|\theta_{j} )\]
\[P(O|\theta)=\prod_{i=1}^{n}\sum_{j=1}^{k}w_{j}P_{j}(o_{i}|\theta_{j} )\]
- Univariate Gausian mixture model
- Assume the probability density function of each cluster follows a 1-d Gaussian distribution. Suppose that there are k clusters.
- The probability density function of each cluster are centered at μj with standard deviation σj, θj, = (μj, σj), we have
\[P(o_{i}|\theta_{j})=\frac{1}{\sqrt{2\pi}\sigma_{j} }e^{-\frac{(o_{i}-\mu_{j})^2 }{2\sigma^{2} }}\]
\[P(o_{i}|\theta)=\sum_{j=1}^{k}\frac{1}{\sqrt{2\pi}\sigma_{j} }e^{-\frac{(o_{i}-\mu_{j})^2 }{2\sigma^{2} }}\]
\[P(O|\theta)=\prod_{i=1}^{n}\sum_{j=1}^{k}\frac{1}{\sqrt{2\pi}\sigma_{j} }e^{-\frac{(o_{i}-\mu_{j})^2 }{2\sigma^{2} }}\]
Speaker notes:
Content Tools
Tools
Sources (0)
Tags (0)
Comments (0)
History
Usage
Questions (0)
Playlists (0)
Quality
Sources
There are currently no sources for this slide.