Current Slide
Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.
Computing Mixture Models with EM
- Given n objects O = {o1, …, on}, we want to mine a set of parameters Θ = {θ1, …, θk} s.t.,P(O|Θ) is maximized, where θj = (μj, σj) are the mean and standard deviation of the j-th univariate Gaussian distribution
- We initially assign random values to parameters θj, then iteratively conduct the E- and M- steps until converge or sufficiently small change
- At the E-step, for each object oi, calculate the probability that oi belongs to each distribution,
\[P(\theta_{j} |o_{i},\theta)=\frac{P(o_{i}|\theta_{j})}{\sum_{l=1}^{k}P(o_{i} |\theta_{l})}\]
- At the M-step, adjust the parameters θj = (μj, σj) so that the expected likelihood P(O|Θ) is maximized
\[\mu_{j}=\sum_{i=1}^{n}o_{i}\frac{P(\theta_{j} |o_{i},\theta)}{\sum_{l=1}^{n}P(\theta_{j} |o_{l},\theta)}=\frac{{\sum_{i=1}^{n}o_{i}P(\theta_{j} |o_{i},\theta)}}{{\sum_{i=1}^{n}P(\theta_{j} |o_{i},\theta)}}\]
\[\sigma_{j}=\sqrt{\frac{\sum_{i=1}^{n}P(\theta_{j} |o_{i},\theta)(o_{i}-\mu_ {j})^{2}}{\sum_{i=1}^{n}P(\theta_{j} |o_{i},\theta)}}\]
Speaker notes:
Content Tools
Tools
Sources (0)
Tags (0)
Comments (0)
History
Usage
Questions (0)
Playlists (0)
Quality
Sources
There are currently no sources for this slide.