Current Slide

Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.

References

  • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD’98
  • C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and J.-S. Park. Fast algorithms for projected clustering. SIGMOD’99
  • S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. J. ACM, 56:5:1–5:37, 2009.
  • J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981.
  • K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest neighbor” meaningful? ICDT’99
  • Y. Cheng and G. Church. Biclustering of expression data. ISMB’00
  • I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. SDM’05
  • I. Davidson, K. L. Wagstaff, and S. Basu. Measuring constraint-set utility for partitional clustering algorithms. PKDD’06
  • C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation. J. American Stat. Assoc., 97:611–631, 2002.
  • F. H¨oppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. Wiley, 1999.
  • G. Jeh and J. Widom. SimRank: a measure of structural-context similarity. KDD’02
  • H.-P. Kriegel, P. Kroeger, and A. Zimek. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowledge Discovery from Data (TKDD), 3, 2009.
  • U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–416, 2007

Speaker notes:

Content Tools

Sources

There are currently no sources for this slide.