Current Slide

Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.

References (cont')

  • E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Proc. 2002 Int. Conf. of Data Mining for Security Applications, 2002.
  • E. Eskin. Anomaly detection over noisy data using learned probability distributions. ICML’00
  • T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge Discovery, 1:291–316, 1997.
  • V. J. Hodge and J. Austin. A survey of outlier detection methdologies. Artif. Intell. Rev., 22:85–126, 2004.
  • D. M. Hawkins. Identification of Outliers. Chapman and Hall, London, 1980.
  • Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern Recogn. Lett., 24, June, 2003.
  • W. Jin, K. H. Tung, and J. Han. Mining top-n local outliers in large databases. KDD’01
  • W. Jin, A. K. H. Tung, J. Han, and W. Wang. Ranking outliers using symmetric neighborhood relationship. PAKDD’06
  • E. Knorr and R. Ng. A unified notion of outliers: Properties and computation. KDD’97
  • E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB’98
  • E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and applications. VLDB J., 8:237–253, 2000.
  • H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-dimensional data. KDD’08
  • M. Markou and S. Singh. Novelty detection: A review—part 1: Statistical approaches. Signal Process., 83:2481–2497, 2003.
  • M. Markou and S. Singh. Novelty detection: A review—part 2: Neural network based approaches. Signal Process., 83:2499–2521, 2003.
  • C. C. Noble and D. J. Cook. Graph-based anomaly detection. KDD’03

Speaker notes:

Content Tools

Sources

There are currently no sources for this slide.