Current Slide

Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.

References (cont')

  • B. Abraham and G.E.P. Box. Bayesian analysis of some outlier problems in time series. Biometrika, 1979.
  • Malik Agyemang, Ken Barker, and Rada Alhajj. A comprehensive survey of numeric and symbolic outlier mining techniques. Intell. Data Anal., 2006.
  • Deepak Agarwal. Detecting anomalies in cross-classied streams: a bayesian approach. Knowl. Inf. Syst., 2006.
  • C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. SIGMOD'01.
  • M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Optics-of: Identifying local outliers. PKDD '99
  • M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying density-based local outliers. SIGMOD'00.
  • V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput. Surv., 2009.
  • D. Dasgupta and N.S. Majumdar. Anomaly detection in multidimensional data using negative selection algorithm. Computational Intelligence, 2002.
  • E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Proc. 2002 Int. Conf. of Data Mining for Security Applications, 2002.
  • E. Eskin. Anomaly detection over noisy data using learned probability distributions. ICML’00.
  • T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge Discovery, 1997.
  • R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection problem using kernel feature space. KDD '05
  • F. E. Grubbs. Procedures for detecting outlying observations in samples. Technometrics, 1969.

Speaker notes:

Content Tools

Sources

There are currently no sources for this slide.