Current Slide
Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.
References (cont')
- B. Abraham and G.E.P. Box. Bayesian analysis of some outlier problems in time series. Biometrika, 1979.
- Malik Agyemang, Ken Barker, and Rada Alhajj. A comprehensive survey of numeric and symbolic outlier mining techniques. Intell. Data Anal., 2006.
- Deepak Agarwal. Detecting anomalies in cross-classied streams: a bayesian approach. Knowl. Inf. Syst., 2006.
- C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. SIGMOD'01.
- M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Optics-of: Identifying local outliers. PKDD '99
- M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying density-based local outliers. SIGMOD'00.
- V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput. Surv., 2009.
- D. Dasgupta and N.S. Majumdar. Anomaly detection in multidimensional data using negative selection algorithm. Computational Intelligence, 2002.
- E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Proc. 2002 Int. Conf. of Data Mining for Security Applications, 2002.
- E. Eskin. Anomaly detection over noisy data using learned probability distributions. ICML’00.
- T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge Discovery, 1997.
- R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection problem using kernel feature space. KDD '05
- F. E. Grubbs. Procedures for detecting outlying observations in samples. Technometrics, 1969.
Speaker notes:
Content Tools
Tools
Sources (0)
Tags (0)
Comments (0)
History
Usage
Questions (0)
Playlists (0)
Quality
Sources
There are currently no sources for this slide.