Current Slide

Small screen detected. You are viewing the mobile version of SlideWiki. If you wish to edit slides you will need to use a larger device.

References (cont')

  • G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
  • R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
  • L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
  • E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,.
  • G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB’98.
  • A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.
  • A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE'01
  • H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets,  SIGMOD’ 02.
  • W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB’97.
  • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : An efficient data clustering method for very large databases. SIGMOD'96.
  • Xiaoxin Yin, Jiawei Han, and Philip Yu, “LinkClus: Efficient Clustering via Heterogeneous Semantic Links”, in Proc. 2006 Int. Conf. on Very Large Data Bases (VLDB'06), Seoul, Korea, Sept. 2006.

Speaker notes:

Content Tools


There are currently no sources for this slide.