\[ {\bar{x}}=\frac{1}{n} \sum_{i=1}^{n}x_{i} \]
\[ \mu = \frac{\sum x}{N} \]
\[ {\bar{x}}=\frac{\sum_{i=1}^{n}w_{i}x_{i} }{\sum_{i=1}^{n}w_{i}} \]
\[ median = {L_{1}} + (\frac{\frac{n}{2}-(\sum freq)l)}{freq_{median}}) width \]
|
Used by permission of M. Ward, Worcester Polytechnic Institute
|
||
|
![]() ![]() |
|
||
|
|
\[ d(i,j)=\frac{p-m}{p} \]
\[ d(i,j)=\frac{r+s}{q+r+s} \]
\[ sim_{Jaccard}(i,j)=\frac{q}{q+r+s} \]
\[ z=\frac{x-\mu}{\sigma } \]
\[ m_{f}= \frac{1}{n}(x_{1f}+x_{2f}+...+x_{nf}) \]
\[ z_{if}=\frac{(x_{if}-m_{f})}{S_{f}} \]
where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)
\[ d(i,j)=\sqrt{(|x_{i1}-x_{j1}|^2+|x_{i2}-x_{j2}|^2+...+|x_{ip}-x_{jp}|^2)} \]
\[ r_{if} \epsilon \left \{ 1,...,M_{f} \right \} \]
\[ d(i,j) = \frac{\sum_{f=1}^{p} \delta _{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta _{ij}^{(f)}} \]