\[ \hat{\mu}=28.61 \]
\[ \hat{\sigma}=\sqrt{2.29}=1.51 \]
\[ X^{2} = \sum_{i=1}^{n}\frac{(o_{i}E_{i})^{2}}{E_{i}} \]
\[ Pr(o\Theta_{1}, \Theta_{2})= f_{\Theta_{1}}(o)+ f_{\Theta_{2}}(o)\]
where fθ1 and fθ2 are the probability density functions of θ1 and θ2
\[ \frac{{o^{'}dist(o,o^{'})\leq r}}{D}\leq \pi \]
\[ reachdist_{k}(o\leftarrow o^{'})=max\left \{ dist_{k}(o),dist(o,o^{'}) \right \} \]
\[ lrdk_{k}(o)=\frac{N_{k}(o)}{\sum_{o^{'}\epsilon N_{k}(o)}reachdist_{k}(o^{'}\leftarrow o)} \]

\[ S(o)=\sum_{U_{j}}p(o\epsilon U_{j})\sum_{V_{i}}p(o\epsilon V_{i})p(V_{i}U_{j}) \]
\[ w(o)=\sum_{i=1}^{k}dist(o,nn_{i}(o)) \]
\[ \sqrt{f^{k}(1f^{k})n} \]
\[ S(C)=\frac{n(C)f^{k}n}{\sqrt{f^{k}(1f^{k})n}} \]
\[ ABOF(o)=VAR_{x,y\epsilon D,x\neq o,y\neq o}\frac{<\vec{ox},\vec{oy} > }{dist(o,x)^2dist(o,y)^2} \]