\[E=\sum_{i=1}^{k}\sum_{p\epsilon C_{i}}(d(p,c_{i}))^{2}\]
\[PAM: O(k(nk)^{2}), CLARA: O(ks^{2} + k(nk))\]
\[Sim(T_{1},T_{2})=\frac{T_{1} \bigcap T_{2}}{T_{1} \bigcup T_{2}}\]
\[Sim(T_{1},T_{2})=\frac{\left \{ c \right \}}{a,b,c,d,e}=\frac{1}{5}=0.2\]
\[dist(K_{i}, K_{j}) = min(t_{ip}, t_{jq})\] 
\[dist(K_{i}, K_{j}) = max(t_{ip}, t_{jq})\]
\[dist(K_{i}, K_{j}) = avg(t_{ip}, t_{jq})\]
\[dist(K_{i}, K_{j}) = dist(C_{i}, C_{j})\]
\[\sqrt{\frac{1}{n(n1)}\sum(x_{i}x_{j})^{2}}\]
\[RI(C_{i},C_{j})=\frac{EC_{C_{i},C_{j}}}{\frac{EC_{C_{i}}+EC_{C_{j}}}{2}}\]
\[N(\mu,\sigma^{2})=\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{\frac{(x\mu)^{2}}{2\sigma^{2}}}\]
\[P(x_{i}\mu,\sigma^{2})=\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{\frac{(x_{i}\mu)^{2}}{2\sigma^{2}}}\]
\[L(N(\mu,\sigma^{2}):X)=P(X\mu,\sigma^{2})=\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{\frac{(x_{i}\mu)^{2}}{2\sigma^{2}}}\]
\[N(\mu_{o},\sigma_{o}^{2})=argmax{L(N(\mu,\sigma^{2}):X)}\]
\[Q(\left \{ C_{1},…,C_{m} \right \})=\prod_{i=1}^{m} P(C_{i})\]
\[Q((\left \{ C_{1},…,C_{m} \right \}\left \{ C_{j1},C_{j2} \right \})U\left \{ C_{j1} U C_{j2} \right \})Q(\left \{ C_{1},…,C_{m} \right \})\]
\[=\frac{\prod_{i=1}^{m}P(C_{i}).P(C_{j1}UC_{j2})}{P(C_{j1}).P(C_{j2})}\prod_{i=1}^{m}P(C_{i})\]
\[=\prod_{i=1}^{m}P(C_{i})(\frac{P(C_{j1}UC_{j2})}{P(C_{j1})P(C_{j2})}1)\]
\[dist(C_{i},C_{j})=log\frac{P(C_{1}UC_{2})}{P(C_{1})P(C_{2})}\]
 

\[H=\frac{\sum_{i=1}^{n}y_{i}}{\sum_{i=1}^{n}x_{i}+\sum_{i=1}^{n}y_{i}}\]